5 research outputs found

    On the capacity of multiple-antenna systems and parallel Gaussian channels with amplitude-limited inputs

    Get PDF
    We propose upper and lower bounds on the capacity of multiple-input multiple-output (MIMO) systems with amplitude-limited inputs. The results are derived by considering an equivalent channel via singular value decomposition, and by enlarging and reducing the corresponding feasible region of the channel input vector, for the upper and lower bounds, respectively. We analytically characterize the asymptotic behavior of the derived bounds for high and low noise levels, and study the gap between them. We also consider parallel Gaussian channels with peak and average power-constrained inputs. For such channels, the capacity-achieving distribution has been reported in the literature to be discrete, which can be computed using numerical optimization techniques. However, there is no closed-form expression and finding the capacity-achieving distribution is computationally tedious. With this motivation, we derive approximate expressions for the capacity at low and high noise variance levels. We illustrate our findings on both MIMO channels and parallel Gaussian channels via several numerical examples. © 1972-2012 IEEE

    On the capacity of MIMO systems with amplitude-limited inputs

    Get PDF
    In this paper, we study the capacity of multiple-input multiple-output (MIMO) systems under the constraint that amplitude-limited inputs are employed. We compute the channel capacity for the special case of multiple-input singleo-utput (MISO) channels, while we are only able to provide upper and lower bounds on the capacity of the general MIMO case. The bounds are derived by considering an equivalent channel via singular value decomposition, and by enlarging and reducing the corresponding feasible region of the channel input vector, for the upper and lower bounds, respectively. We analytically characterize the asymptotic behavior of the derived capacity upper and lower bounds for high and low noise levels, and study the gap between them. We further provide several numerical examples illustrating their computation. © 2014 IEEE

    On the capacity of fading channels with amplitude-limited inputs

    Get PDF
    We address the problem of finding the capacity of fading channels under the assumption of amplitude-limited inputs. Specifically, we show that if the fading coefficients have a finite support and the channel state information is only available at the receiver side, there is a unique input distribution that achieves the channel capacity and this input distribution is discrete with a finite number of mass points. © 2016 IEEE

    A new signaling scheme for Underwater Acoustic communications

    Get PDF
    Underwater Acoustic (UWA) communications has attracted a lot of interest in recent years motivated by a wide range of applications. Different signaling solutions have been developed to date including non-coherent communications, phase coherent systems, multi-input multi-output (MIMO) solutions and multi-carrier based approaches. In this paper, we develop a novel UWA communications paradigm using biomimetic signals. In our scheme, digital information is mapped to the parameters of a class of biomimetic signal set and at the receiver an estimator to obtain the parameter values is utilized. To facilitate this, we develop analytical signal models with nonlinear instantaneous frequencies matching mammalian sound signatures in the time-frequency plane. We provide suitable receiver structures, and present decoding results using data recorded during the Kauai Acomms MURI 2011 (KAM11) UWA communications experiment. © 2013 MTS

    An underwater acoustic communication scheme exploiting biological sounds

    Get PDF
    Underwater acoustic (UWA) communications have attracted a lot of interest in recent years motivated by a wide range of applications including offshore oil field exploration and monitoring, oceanographic data collection, environmental monitoring, disaster prevention, and port security. Different signaling solutions have been developed to date including non-coherent communications, phase coherent systems, multi-input and multi-output solutions, time-reversal-based communication systems, and multi-carrier transmission approaches. This paper deviates from the traditional approaches to UWA communications and develops a scheme that exploits biomimetic signals. In the proposed scheme, a transmitter maps the information bits to the parameters of a biomimetic signal, which is transmitted over the channel. The receiver estimates the parameters of the received signal and demaps them back to bits to estimate the message. As exemplary biomimetic signals, analytical signal models with nonlinear instantaneous frequency are developed that match mammal sound signatures in the time-frequency plane are developed. Suitable receiver structures as well as performance analysis are provided for the proposed transmission scheme, and some results using data recorded during the Kauai Acomms MURI 2011 UWA communications experiment are presented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd
    corecore